EXAMEN PARTIEL DE LOGIQUE FLOUE - RESEAUX NEURONAUX
 Durée : 01H30 - Documents permis, calculatrices permises

Exercice 1 : (4 points)

Déterminer la quantité floue $B=e^{A_{1}}$ (exponentielle de la valeur absolue de A), où A est un nombre flou caractérisé par triangle($-2,0,1$). (3 points)

En déduire la α-coupe de B de niveau 0.25 . (1 point)

Exercice 2: (6 points)

Soit la règle floue «si l'âge est celui d'un vieux, alors la vue est médiocre», où les descriptions «vieux» et «médiocre» sont représentées par deux sous-ensembles flous définis respectivement par trapèze $(60,70,120,120)$ et trapèze $(0,0,15,25)$. En déduire les caractérisations de la conclusion de la règle par les implications de Reichenbach, Goguen, Rescher-Gaines, Brouwer-Gödel et Larsen, dans les trois cas suivants :

1 - L'observation est le noyau de la classe « vieux ». (1 point)
2 - L'observation est «plus ou moins vieux", représentée par le trapèze $(56,68,120,120)$. (2 points)
3 - L'âge est de 67 ans. (3 points)

Exercice 3: (4 points)

On considère une relation floue $R: X \rightarrow X$ caractérisée par sa fonction d'appartenance $f_{R}\left(x_{i}, x_{j}\right), i, j=1, \ldots, 4$, donnée par :

$f_{R}\left(x_{i}, x_{i}\right)$	x_{1}	x_{2}	x_{3}	x_{4}
x_{1}	1	0.6	0.4	0.4
x_{2}	0	1	0	0
x_{3}	0	$0.3,7$	1	0
x_{4}.	0	0.7	0.8	1

Vérifier si la relation floue R est réflexive, symétrique, antisymétrique et transitive.

Exercice 4: (6 points)

Soient deux variables linguistiques (Température, X , \{froide, fraîche, tiède, chaude\}). (Chauffage, Y, \{arrêté, faible, moyen, important\}) et les significations floues qui leur sont associées (voir Figure 1).

On donne le jeu de règles suivant relatif à la commande d'un système de chauffage :

R1 : si Température est froide alors Chauffage est important
R2 : si Température est fraîche alors Chauffage est moyen
R3 : si Température est tiède alors Chauffage est faible
R4 : si Température est chaude alors Chauffage est arrêté
On demande de déterminer la valeur de la sortie de commande correspondant à une entrée $x=12^{\circ} \mathrm{C}$. A noter que le moteur d'inférence utilise la méthode de raisonnement de Mamdani, et la méthode de défuzzification est celle du centre de gravité.

Figure 1

EXAMEN PARTIEL DE LOGIQUE FLOUE - RESEAUX NEURONAUX
 Durée : 01H30 - Documents permis, calculatrices permises

Exercice 1: (4 points)

On considère deux sous-ensembles flous finis A_{1} et A_{2} caractérisés respectivement par :

$$
A_{1}=\{(1,0.7),(5,0.2),(10,0.4)\} \quad \text { et } \quad A_{2}=\{(1,0.3),(2,0.6),(6,0.9)\}
$$

où chaque couple $\left(n, f_{A i}(n)\right) \in A_{i}$ est composé de la valeur de la variable n définie sur l'ensemble des entiers naturels, et de la valeur correspondante de la fonction d'appartenance $f_{A i}(n)$ caractérisant le sous-ensemble flou A_{i}.

On demande de définir les sous-ensembles flous $A_{1} \oplus A_{2}$ et $A_{1} \otimes A_{2}$.

Exercice 2: (4 points)

On considère la relation floue $R=$ «approximativement égal à », définie par sa fonction d'appartenance :

$$
\forall(x, y) \in \Re^{+{ }^{+}} \times \Re^{+}, \quad f_{R}(x, y)=\left\{\begin{array}{cl}
\frac{10 y-9 x}{x} & , \text { si } y<0.9 x \\
\frac{11 x-10 y}{x} & , \text { si } x \leq y<1.1 x \\
0 & \text {, si } y \geq 1.1 x
\end{array}\right.
$$

Caractériser la quantité floue A qui est en relation avec le nombre flou B à travers R dans les deux cas suivants :
a) B est le singleton $\left\{y_{0}\right\}$
b) B est caractérisé par triangle $\left(y_{0}-1, y_{0}, y_{0}+2\right)$

Exercice 3 : (4 points)

On dispose de deux sous-ensembles flous $A=$ triangle $(0,1,3)$ et $B=$ triangle($5,7,8$), et d'une règle floue : «si V est A alors W est B » où V est la variable observée et W est la variable de sortie.
Déterminer la conclusion B^{\prime} de la règle pour une observation $A^{\prime}=$ triangle $(0,2,3)$ en utilisant l'implication de Lukasiewicz.

Exercice 4: (8 points)

Un contrôleur flou de turbine à vapeur utilise les règles de décision regroupées dans le tableau suivant :

P	Weak	Low	OK	Strong	High
Cold	PL	PM	PS	NS	NM
Cool	PL	PM	ZR	NM	NM
Normal	PM	PS	ZR	NS	NM
Warm	PM	PS	NS	NM	NL
Hot	PS	PS	NM	NL	NL

Les variables d'entrées T et P désignent respectivement la température et la pression du gaz. A partir de ces variables, le régulateur fournit une action de ralentissement (throttle action) qui constitue la variable de commande du processus.
Les sous-ensembles flous caractérisant les variables d'entrée et de sortie sont représentés à la figure 1.
Pour une température $T=200$ et une pression $P=140$, calculer la valeur non-floue de la variable de commande par la méthode de raisonnement flou de Mamdani. La méthode de défuzzification est celle du centre de gravité.

Figure 1: Sous-ensembles flous des variables d'entrée et de sortie du contrôleur.
E.S.I.B.

Cursus Génie Electrique et Mécanique
Semestre 6

EXAMEN PARTIEL DE LOGIQUE FLOUE - RESEAUX NEURONAUX
 Durée : 01H30 - Documents permis, calculatrices permises

Exercice 1 : (5 points)

Déterminer le nombre flou $D=(A \oplus 2 B) \varnothing C$, où A, B et C sont des nombres flous caractérisés respectivement par triangle($-8,-6,-1$), triangle $(2,3,5)$ et triangle($1,2,4$). (3 points)

En déduire ses α-coupes pour $\alpha=0.3$ puis 0.7. (2 points)

Exercice 2: (5 points)

Soit la règle floue «si l'âge est celui d'un vieux, alors la vue est médiocre», où les descriptions «vieux» et «médiocre» sont représentées par deux sous-ensembles flous définis respectivement par trapèze $(56,60,66,76)$ et trapèze $(2,4,6,8)$. En déduire les caractérisations de la conclusion de la règle par les implications de Willmott, Kleene-Dienes, Lukasiewicz et Mamdani, dans les trois cas suivants :

1 - L'observation est le noyau de la classe " vieux ». (0.5 point)
2 - L'observation est «plus ou moins vieux», représentée par le trapèze($54,58,71,81$). (2 points)
3 - L'âge est de 68 ans. (2.5 points)

Exercice 3: (3 points)

Soit la relation floue R définie par sa fonction d'appartenance :

$$
f_{R}(x, y)=e^{-(x-y)^{2}}
$$

x et y étant deux variables réelles. R est-elle une relation de similarité ? Montrer pourquoi.

Exercice 4: (7 points)

On considère un système asservi à base d'un régulateur flou. La variable d'entrée du contrôleur flou est l'erreur, notée e, entre la consigne de référence et le signal de sortie du système. La variable de sortie du contrôleur n'est autre que le signal de commande noté u.

On définit les classes NULLE (N) et FAIBLEMENT POSITIVE (FP) de la variable e par les fonctions d'appartenance $\mu_{N}(e)$ et $\mu_{F P}(e)$ données à la Figure 1 . De même, on définit les classes FAIBLE (F) et MOYENNE (M) de la variable de commande u par les fonctions d'appartenance $\mu_{F}(u)$ et $\mu_{M}(u)$ données également à la Figure 1.

De plus, on considère les deux règles floues suivantes :

RI : Si e est NULLE alors u est MOYENNE
 R2 : Si e est FAIBLEMENT POSITIVE alors u est FAIBLE

On utilise la méthode de Mamdani dans le raisonnement flou et la méthode du centre gravité pour la défuzzification.

Figure 1

1 - Déterminer la valeur de la sortie de commande correspondant à une erreur $e=6 \%$. (3 points)

2 - On suppose que l'erreur est imprécise et caractérisée par le nombre flou triangle $(4,6,8)$. Donnér, dans ces conditions, le résultat flou de l'ensemble des deux règles. En déduire l'effet de l'imprécision sur la réponse du régulateur. (4 points)

