UNIVERSITE LIBANAISE FACULTE DE GENIE

BRANCHE II - Roumieh

Département Mécanique Semestre IX

EPREUVE DE PLOMBERIE

Date: 25 Novembre 2013

Durée: Deux heures

Notes: Documents permis

Exercise 1: (15 points)

What will be the water temperature of a hot water cylinder 300 liters capacity, heated at 60°C, after 3 consecutive showers, knowing that for each shower we need 75 liters at 43°C, and the cold water temperature is 20°C?

Exercise 2: (10 points)

Calculate the boiler capacity for a villa including 4 floors, with heating loads as follow:

 1^{st} floor = 20Kw, 2^{nd} floor = 21550Kcal/h, 3^{rd} floor = 85000Btu/hr, and 4^{th} floor = 15000J/s

The domestic hot water cylinder volume is 500 Liters and should be heated in 45 minutes.

The cold water temperature is 15°C, and the storage hot water temperature is 60°C.

```
Ext
BE -3 V = 300L. Cp = 600
Showel = 75L à u3° c.=to.
   43 = \frac{V_1 + V_2 + 2}{V_1 + V_2} = \frac{60V_1 + 20V_2}{75} = \frac{5.60V_1 + 20V_2 = 3225}{V_1 + 20V_2} = \frac{3225}{V_2 = 31.84}
                                                                 V2=31,875
 tm = (300 - 43,125) x60 + 43,125 x80 = 54,250C.
 Shower 2 - 54,25 V, +20 Vz = 3 225. } V1 = 50,364 96L
V1 + Vz = 75
   -stm2 = (300 - 50, 365) x S4, 25 + 50, 365 x 20 = 48,5°C.
shower 3. 48,5 V, +20 Vz = 3225-3 V, = 60,531.
                VIA VE = AT
       Em = = 42,74965°C.
after 3 consecutive showers the water T" in the cylendor will be 42,71
Exercia 2
 ist floor sooke
 2nd floor => 2155 OKCOL/h = 21550 x 1,16x 10-3 = 25KW
 3rd floor => 85000 BTU/h = 85000 x 0,29 30711 x10-3= 24,911 KW
 uth $1000 => 15KW.
  Q = m C DT = 500 x 1 x (60-15) = 22500 Kcal.
    P= 0 = 22500 = 30000 Kcal/h = 34,8 Kw.
   then for the 4th floor
              Boiler capacity 2 34189x4 = 199,32kw = 144kw.
```

Exercise 3: (30 points)

We have 2 typical residential buildings, each including 15 floors, located at one podium floor.

Each floor includes 1 apartment with the following wet areas:

a) Master WC = 2 lavatories, 1 Water closet, 1 bidet, and 1 shower	Riser R1
b) Bedrooms WC = 1 lavatories, 1 Water closet, 1 bidet, and 1 shower	Riser R2
c) Guest WC = 1 lavatories, and 1 Water closet	Riser R3
d) Kitchen = 1 sink, and 1 laundry tray	Riser R4

Each wet area of all typical floors is connected to one common riser and collected at podium ceiling level (branch A-E), and after connecting both towers to riser E-F the drainage pipes go down to basement ceiling level (riser E-F), and finally connected to the municipality sewage network (branch F-G)

- a) Calculate the dimensions of risers R1, R2, R3 & R4
- b) Calculate the sizes of branches [A-B], [B-C], [C-D], [D-E], [E-F], & [F-G], by considering a slope of 2% for all horizontal pipes

MOUVEMENT DE L'ESIB

(3)

```
Ex3.
26-15- $100cs.
  a) Master We = 2 Lav
                1 water closet.
                1 bidet
                 1 shower.
                                14. FU tableau 11.4.2 p.11-7
        pour 15 et age. 14 x 15= 210 FU tableau
                   2) 4" diameter
                                   210>72 -
Riser 1: 4" - - Vertical.
   b) Bedrooms WC = 11av.
                      i bidet. 3
                       I shower 2
                             + 1
12 FU pour 1 étage
                 Don les 15 étage => 12 x 15 = 180 FU
           = DR2= u" vertical.
                                        180)72
Mar Sulling Aug
   c) guest we!
           pour 15 étage 7 x 15 = 105 FU.
                                              105) 72.
             DR3 = u" rechical
                                        pour 15 étage = 6x15
               Isimk.
    d) Kitchen.
                1 loundry tray
                                             DR4 = 4"
```

b) [AB] -> 210 FU Slope 20%. => 4"

[BC] -> 210 FU + 180 FU = 390 FU Slope 20% -> 5"

[C-D] -> 390 FU + 105 FU = 49 c FU. Slope 20% -> 6"

[DE] -> 49 c FU + 90 FU = 685 FU slope 20% -> 6"

[DE] -> 49 c FU + 90 FU = 685 FU slope 20% -> 6"

[EF] vertical pipe -> 685 FU x 2 = 1170 U 6"

[F-G] -> 1170 FU 20% slope -> 8"

[F-G] -> 1170 FU 20% slope -> 8"

MOUVEMENT DE L'ESIB SOLIDAIRE

Exercise 4: (45 points)

(()

- By considering a residential building of 8 floors, where each floor is one apartment including:
 - a) Master WC = 2 lavatories, 1 Water closet, 1 bidet, and 1 shower
 - b) Bedrooms WC = 1 lavatories, 1 Water closet, 1 bidet, and 1 shower
 - c) Guest WC = 1 layatories, and 1 Water closet
 - d) Kitchen = 2 sink, and 2 laundry tray
 - e) Hose bib at main balcony (D_b=0.1L/s)

Each floor level is 4m height; the ground floor is a reception area, the water tank and the booster set are located in basement floor. (For pipes lengths and floors heights refer to schematic riser)

- ✓a) Calculate the pipe sizes for the cold water riser following the French code
- b) Calculate the domestic hot water storage tank capacity of typical floors based on ASHRAE standards
 - c) Calculate the static head of the booster pump to provide a residual pressure of 1.5bars at apartment main isolating valve (consider j=0.01m/m), and define the values of P_d & P_e ->
 - d) Indicate the residual pressure at each floor level, and show where the pressure reducing valve is required to avoid exceeding a residual pressure of 50PSI

Good Luck

```
Hem bram.
  Db = 8,58+ 2,86=11,44 litres.
  N=60 30 C8= 0,8. = 0,10415.
   Dp=1,1915 Etre.
 5 em branchement.
Dn=11, 44+2,86 = 14,3 .e.
 N= 75 3 CS= 0,8 = 0,093.
 Dp= 1,331 eite
                          N=90 23 Cs= 0,8-=0,085
6 em br.
Db=14,3 + 2,86 =17,16 e.
 Dp = 1, USSI.
DP=13,16+516 =50,056 N=102 => CP=0'038AA
fem br.
Dp = 1157 l.

N= 120 25 Cs2 01073 21 Dp = 1,6479
 Soit la perte de Charge et o,1.
 Dp=0,612 2. J=0,1
    D= 27,3 V= 1,1/1,5 OK.
          Dp = 0,612 5=0,1.
  Promet 1
          D= 1744
                      Apt 1 => D = 11/4"
  Apta.
          Apt6 -
  prom 2.
        DP=0,85. 25 1/4" V (1,50K.
           Dp = 1,0369 >> 11/2" V < 1,50K
  bram 1.
```

br 5. 11/2 V(1,5 0K

11/2" V(1,50x

pr u

UNIVERSITE LIBANAISE

FACULTE DE GENIE

Département Civil

BRANCHE II - Roumieh

Semestre IX

EPREUVE DE PLOMBERIE

Date: 22 Janvier 2014

Durée: Deux heures

Notes: Documents permis

EFREUVE DE FLOMBERIE

Exercise 1: (10pts)

Define the following:

a) Débit de base

b) Fixture unit

c)Stack vent

d)Pressure relief vent

Exercise 2: (25pts)

Consider the building dimensions as shown in figure-1.

The roof 1 is discharging the storm water to roof 2, and storm water is collected from roof 2 to discharge the storm water to municipality storm network at point H.

- Calculate the dimensions of the branches [A-B], [C-D], [D-E], [E-F], [F-G], [G-H], by considering the slope of horizontal pipes 2%, and the rainfall rate is 5 inches per hour
- The sewage from the building is collected to one main [X-H], with total fixture units = 700, determine the dimension of the main sewer branch [X-H] by considering a slope of 2%
- Calculate the size of the combined storm and sewer line [H-Y] by considering the slope of pipe is 2%.

Exercise 3: (65pts)

Calculate the dimensions for all water distribution branches shown in below figure by using the fixture method, the maximum velocity shall be 2m/s, and the maximum friction loss shall be 4psi/100ft

- The domestic hot water serving the building is centralized in 1 storage tank; define the required storage capacity by using the ASHRAE method.
- c) The cold water is distributed by booster pump located in basement floor at 10m below the apartment's level. Calculate the required flow and head of the booster pump to provide a minimum residual pressure of 1.5bars at any point of the system
- d) Describe the sequence of operation of the booster set if operating as duplex, and indicate the values of P_{e1} , P_{e2} , P_{d1} and P_{d2} for proper operation of the set.
- Each superposed apartments are drained to a separate soil stack as shown in the below picture; calculate the size of the typical stack if the building includes 15 floors.

- Calculate the dimensions of all branched from N1 to N6, considering a slope of 2%
- g) Calculate the dimension of the vent stack and indicate the location of the relief vent if required.

Bonne Chance